

Flow Meter

Product Catalogue 2019-10

Flow Meter Flow-5

In parallel connected circuits flow changes might remain undetected as the flow of medium is distributed among the remaining channels.

External flow meters Flow-5 monitor parallel circuits individually and detect changes early on, before production quality begins to be compromised.

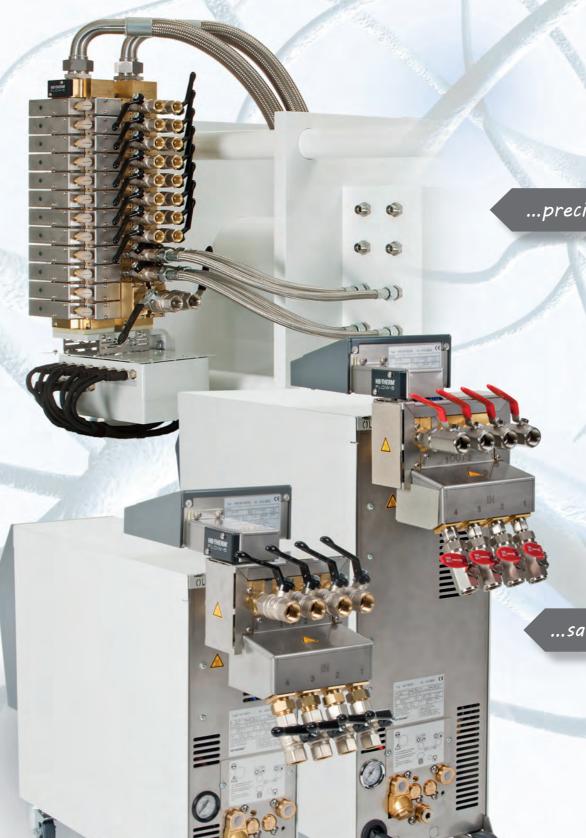
The Flow-5 are easy to operate and provide highly accurate ultrasonic measurements.

...parallel, more power, and still reliable

Constant temperature control and high part quality

- Larger overall flow
- Smaller temperature difference between main line and return line
- Better homogeneity in temperature distribution

Saves costs and energy


• Fewer temperature control units necessary

...easy, intelligent and convenient

- Determination of process power per circuit
- · Automatic limit value setting
- Assistant for manual flow adjustment *
- · Recording of data via USB and analysis in Excel

Tu 2019-09-24, 14:38	HB-THE	RM	Tu 2019	9-09-24	14:38		H	B-1	THERM	
B1 B2 B3 B4 B5 B6 E	7 B8 🔼	D	A	ВС	A1	A2	A3		KI DI	
	10		No. R	L/min	Ret	No.	R	min	Ret	
Class sets	10		1	6.2	173.2	9	1	3.5	174.2	
Flow rate		J. 1	2	5.3	172.8	10		8.8	173.6	
	. 0.	min	3	OFF		11	0	FF		
Main line	175.0	°C	4	10.1	174.2	12		5.4	172.9	
Return line	174.2	°C	5	2.1	171.7	13	0	FF		
Process power	1.0	kW	6	0.7	169.3	14	0	FF		
Difference return/main line	-0.8	K	7	18.1	174.2	15		0.7	169.4	
A CONTRACTOR OF THE PARTY OF TH	* *		8	4.5	173.1	16		3.6	172.7	
В	Normal operati	on	В				Norma	ор	eration	
7			7							

...precise, powerful and efficient

Large scope of application

- Smallest flow rates from 0,4 L/min
- High temperatures up to 200 °C *
- Different models

...safe, reliable and low on maintenance

Fully automated process monitoring

- Continuous monitoring of flow and temperature per circuit
- Highly accurate ultrasonic flow rate measurement

Durable construction

- Solely non-corroding materials in the hydraulic circuit
- Flow rate measurement without any moving parts

Improved protection for the mould

Early detection saves costly maintenance

Model: Unit attachment

Standard Equipment	•					
Hydraulics		Continuous maintenance-free ultrasonic flow meter				
		Nominal measuring range 0,4 to 20 L/min per circuit				
		4 circuits				
		Hydraulic circuit made of non-corroding materials				
		Common temperature sensor in the main line Pt 1000				
		Temperature measuring in the return line of each circuit Pt 1000				
Command / Display		Three coloured LEDs show the status of the unit				
		Info button for switching display				
		Determination of individual process power				
		Automatic limit value setting				
Interface	HB (IN/OUT)	HB-Therm data interface CAN for connection to a temperature control				
		unit Thermo-5 or control module Panel-5				
		2 sockets Sub-D 15 pin (1 male and 1 female)				
	AUX	Frequency output (20 L/min @ 200 Hz)				
		1 socket Sub-D 25 pin (male)				
Power supply		Power supply via interface HB				
		24 VDC; 1,5 W				
		·				

Additional Equipment

ZH	Shut-off valves	Shut-off valves for all circuits
----	-----------------	----------------------------------

Communication (→P. 8, Fig. 1)

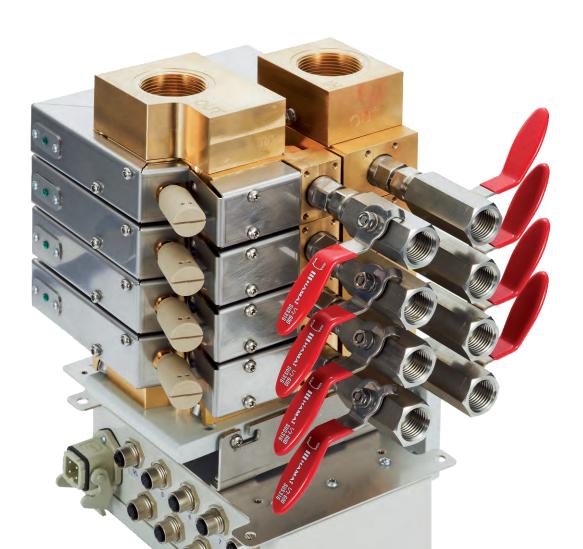
Technical Specifications

Flow meter	Model		Unit attachment		
	Temperature control unit		Thermo-5		
	Heat transfer medium		Water Oil		Oil
	Maximum main line temperature	°C	160 180 200		200
	Housing size of temperature control unit		1 or 2	2	2
Туре			HB-FM160	HB-FM180	HB-FM200
	Unit attachment		G	G	G
	Maximum number of circuits		4	4	4
Circuits	Number of circuits	4	•	•	•
Connection	Cable HB, 1 m		•	•	•
Additional equipme	nt Shut-off valves	ZH	0	0	0

Ordering example: HB-FM160G4-4-ZH, English

Nominal measurement range	Per circuit	L/min	0,4–20	0,4–20	0,4–20
Connection circuits	Thread		G1⁄2	G½	G1/2
	Resistance	bar, °C	20, 180	25, 200	8, 220
Dimensions (→P. 9, Fig. 2)	Height	mm	246	246	246
	Width	mm	180	184	184
	Depth	mm	348	348	348
Weight max.		kg	9	9	9

Standard specification Optional


Standard	Equi	pment
Otaliaal a	-941	D1110116

Standard Equipm	CIII						
Hydraulics		Continuous maintenance-free ultrasonic flow meter					
		Nominal measuring range 0,4 to 20 L/min per circuit					
		Expansion of measuring range up to 40 L/min by parallel connection of					
		two circuits (accessories)					
		Manual flow rate setting with fine adjustment valve per circuit					
		Modular-design with up to a maximum of 16 circuits					
		Hydraulic circuit made of non-corroding materials					
		Common temperature sensor in the main line with sensor Pt 1000					
		Temperature measuring in the return line of each circuit with sensor Pt 100					
Command / Displa	ay	Signalling lights for visualising flow rates					
		Determination of individual process power					
		Automatic limit value setting					
Interface	HB (IN/OUT)	HB-Therm data interface CAN for connection to a temperature control					
		unit Thermo-5 or control module Panel-5					
		2 sockets Sub-D 15 pin (1 male and 1 female)					
Power supply		Power supply via interface HB					
		24 VDC; 2,2 W/4 circuits					

Additional Equipment

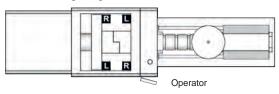
ZA	Connection for alarm	Alarm using potential-free contact (rating max. 250 VAC, 4 A)				
		1 socket Harting Han 3A (male)				
ZH	Shut-off valves	Shut-off valves for all circuits (without parallel connections)				

Communication (→P. 8, Fig. 1)

Technical Specifications

Flow meter	Model		Auto	nomic a	ssembl	ly				
	Heat transfer medium		Wate	er						
Maxir	mum main line temperature	°C	160				180			
Туре			HB-	FM160			HB-	FM180		
	Mounting left 2)		L				L			
	Mounting right 2)		R				R			
N	Maximum number of circuits		4	8	12	16	4	8	12	16
Circuits	Number of circuits	2	•				•			
		3	0				0			
		4	0				0			
		5		•				•		
		6		0				0		
		7		0				0		
		8		0				0		
		9			•				•	
		10			0				0	
		11			0				0	
		12			0				0	
		13				•				•
		14				0				0
		15				0				0
		16				0				0
Additional equipment	Connection for alarm	ZA	0	0	o	0	0	o	0	0
	Shut-off valves G½	ZH	0	0	0	0	0	0	0	0
Accessories (→P. 11, Fig. 3)	Cable HB, 5 m	O/ID	T250	066-3			T250	066-3		
	Parallel connection set G3/4	O/ID	T262	243-1			T262	243-4		
Parallel connection	set with shut-off valves G¾	O/ID	T262	243-2			T262	243-3		
Adjustable scre	ew joint set (per circuit) G1/2	O/ID	T26	173			T26	173		

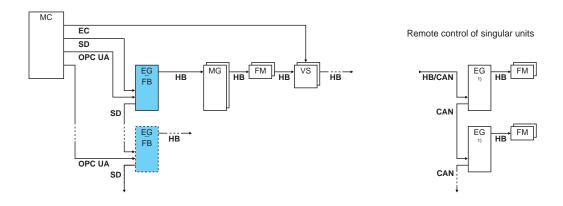
Ordering example: HB-FM160L8-5-ZH, English

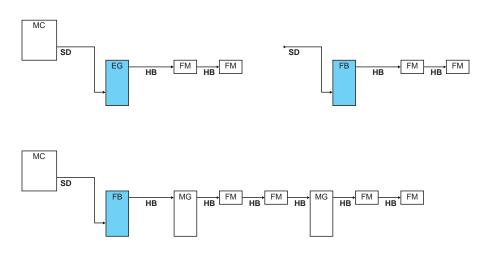

+ 1x Parallel connection set with shut-off valves G¾ (O/ID T26243-2)

+ 1x Cable HB, 5 m (O/ID T25066-3)

Nominal measurement ran	ge Per circuit	L/min	0,4–20			0,4–20				
	Parallel connection	L/min	0,8–40		0,8–40					
Connection main manifold	Thread		G1 ¼		G1 1/4					
	Resistance	bar, °C	20, 18	30			25, 20	25, 200		
Connection circuits	Thread		G½				G1/2			
	Parallel connection; Thread		G3⁄4			G¾				
	Resistance	bar, °C	20, 18	30			25, 200			
Dimensions (→P. 10/11, Fig. 3)	max. Height	mm	352	504	687	839	352	504	687	839
	Width	mm	336	336	336	336	336	336	336	336
	Depth	mm	245	245	265	265	245	245	265	265
Weight max.		kg	25	41	57	73	25	41	57	73

[•] Standard specification • Optional


²⁾ Note for mounting left/right:



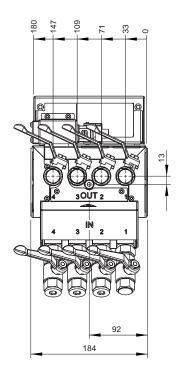
Communication (Fig. 1)

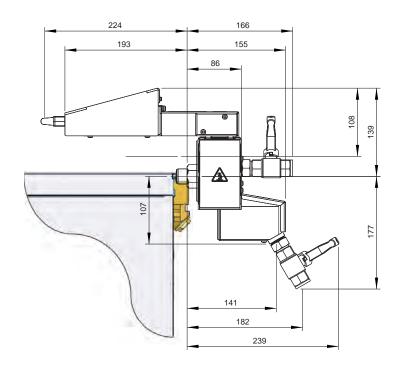
Basic circuit diagram

Examples

Legend	Description	Note			
MC	Machine control	max. 1			
FB	Control modul Panel-5	max. 1			
EG	Temperature control unit Thermo-5, singular unit	max. 16 (per command)			
MG	Temperature control unit Thermo-5, modular unit				
FM	Flow meter Flow-5	max. 32 (at 4 circuits each)			
VS	Switching unit Vario-5	max. 8			
SD	Communication via serial data interface	Maximum number of units, operating range and transfer of			
	DIGITAL (ZD), CAN (ZC) or PROFIBUS-DP (ZP)	flow rate values depend on machine control and protocol			
OPC UA	Communication OPC UA via Ethernet (ZO)				
НВ	Communication interface HB	Order of connection is not relevant			
HB/CAN	Communication interface HB/CAN	To remotely control singular units			
CAN	Communication interface CAN (ZC)				
EC	External control	Assignment dependent on machine control unit			

Command

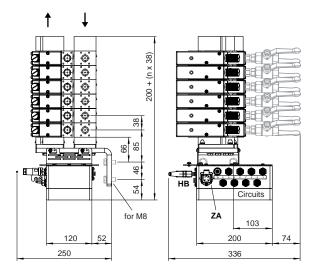

¹⁾ Command deactivated

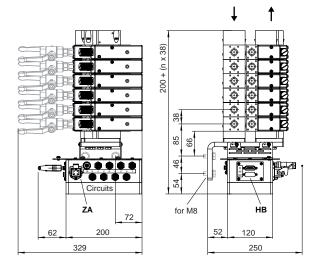


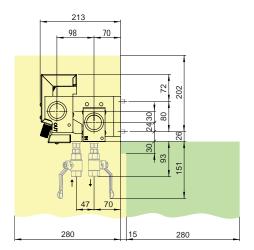
General Technical Data

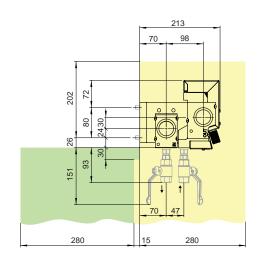
Environment	Temperature	5-60 °C
	Humidity	35-85 % RH (non-condensing)
Colour	Control panel (unit attachment)	RAL 7012 (basalt grey)
Protection class		IP 54
Standards		EN 50581, EN 61010-1, EN 61326-1, EN ISO 13732-1
Certification/Approval		CE (compliance with relevant CE directives)
Tolerance	Flow indicator	±5 % of measured value

Dimensioned (Fig. 2) HB-FM160/180/200G, scale 1:6

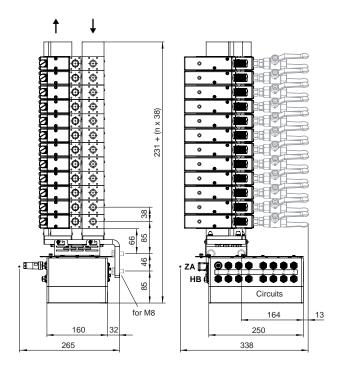


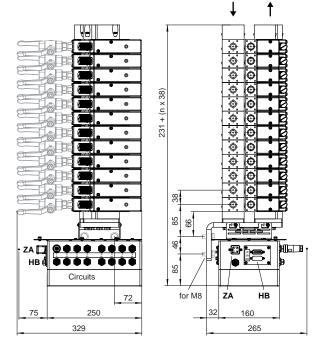

Dimensions (Fig. 3)

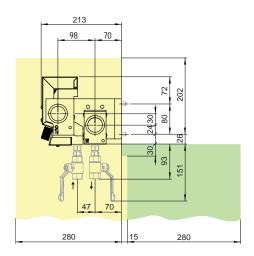

HB-FM160/180L (mounting left, 2–8 circuits)

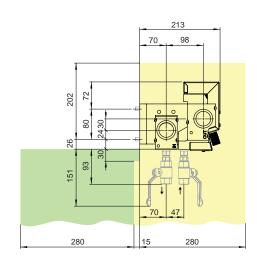

HB-FM160/180R (mounting right, 2-8 circuits)

Scale 1:10

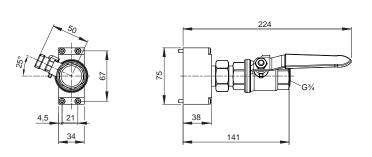

- n Number of circuits
- Required free space
- Additionally suggested free space
- 1) Mounting screws M8 included

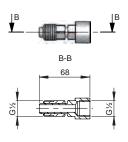

Note: 3D data available



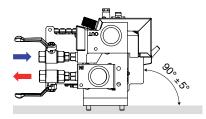

HB-FM160/180L (mounting left, 9–16 circuits)

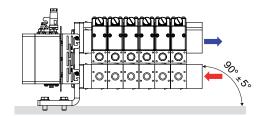
HB-FM160/180R (mounting right, 9-16 circuits)

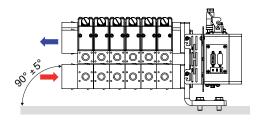


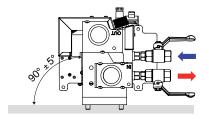


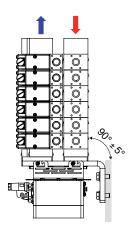
Parallel connection of two circuits, scale 1:5

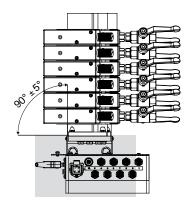

Adjustable screw joint set, scale 1:5

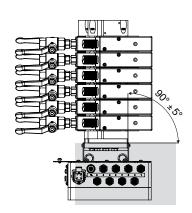


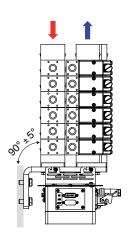

Mounting Position (Fig. 4)


Horizontal (mounting left)

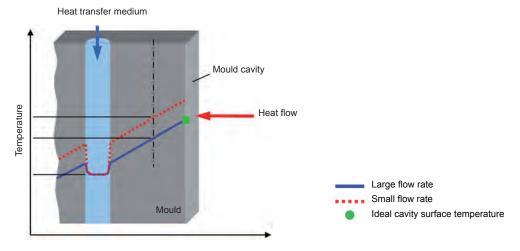



Horizontal (mounting right)




Vertical (mounting left)

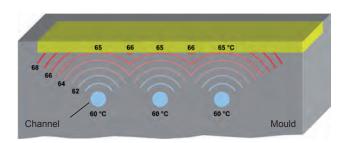
Vertical (mounting right)

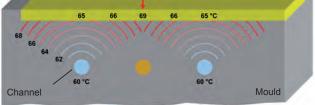


Flow rate measurement

When temperature control circuits are connected in parallel in an injection mould, slight changes in the flow rates of the individual channels can affect the temperature in the mould cavity, which in turn can lead to product quality problems. Reliable measurement and monitoring of the flow rates in all parallel-connected temperature control circuits can enable the benefits of this type of connection to be exploited and ensure consistently high-quality finished parts. Depending on the application it can make sense to mount the flow meters on the temperature control unit or autonomic near the mould.

Influence of flow rate in the injection moulding process


Heat transfer at the wall of the cooling channel depends heavily on the flow conditions, which in turn are primarily determined by the flow rate. A change of the temperature difference between the heat transfer medium and the mould therefore has a direct effect on the quality-relevant temperature of the surface of the mould cavity. In the injection moulding process an even temperature distribution at the surface of the mould cavity is particular important for mould temperature control.

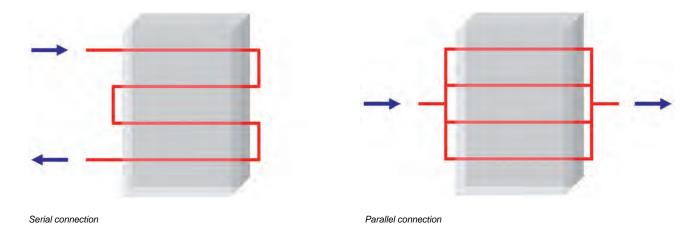


Temperature gradient in the mould for different flow rates

Partly or complete blocked channels of a circuit degrade the temperature distribution massively.

Unfortunately, they cannot be detected by measuring and monitoring the main flow of the temperature control unit only.

Temperature distribution for the same flow rate in all three channels


Temperature distribution when the middle channel is blocked

In certain cases, the temperature in the area of influence of a channel can be changed by adjusting the flow consciously. The reduction of the flow results in higher temperatures. With this technique the sensitivity of perturbation increases, what makes the monitoring of the flow of the channels essential.

Serial versus parallel connection

In applications with serially connected temperature circuits, the flow monitoring of the individual temperature control unit is perfectly adequate because the flow in all channels connected is equal. In contrast to serial systems, parallel connected temperature control circuits offer a lower pressure drop with a larger total flow rate, fast-response temperature control and more even temperature distribution as well as a smaller temperature difference between feed and return flow.

In order to take full advantage of temperature control circuits connected in parallel, it is advisable to measure and monitor the flow rates of the individual circuits.

HB-THERM®

Temperature Control Technology

HB-Therm worldwide.

HB-Therm is one of the leading manufacturers of temperature control units worldwide. Since 1967 HB-Therm AG has been developing and producing innovative temperature control technology to the highest quality standards. With its comprehensive know-how and motivated workforce, the company has succeeded in becoming the technology leader in its sector.

This Swiss family enterprise employs around 150 staff and has established itself as a systems supplier offering seamless customer support from machine design through to a complete after-sales service. Production is exclusively in St. Gallen. Own subsidiaries (Sales & Service) in Germany and France as well as 40 other national agencies are representing HB-Therm around the globe.

The company's quality and environmental management system is based on the continual improvement of all activities and processes and is certified to ISO 9001/14001. All its products and services are based on a philosophy of offering "Swiss-made" quality to customers.

Customer service. Included.

With our sales and marketing network service we can offer comprehensive expert advice and assistance in:

- Optimum temperature control process
- Determination of the specification of the product and advice regarding functionality
- Electrical and hydraulic connections
- Data interfaces
- Heat transfer medium
- · Servicing of the equipment

Our experts are always available for support when questions of specialist requirements or applications arise or when putting the equipment into operation, or for the operational training of your staff.

HB-THERM AG

Spinnereistrasse 10 (WU 3)

Postfach

9006 St. Gallen

Switzerland

Phone +41 71 243 6-530

info@hb-therm.ch, www.hb-therm.ch

Subsidiaries

HB-THERM GmbH Dammstraße 78 53721 Siegburg

Germany

Phone +49 2241 5946-0

info@hb-therm.de, www.hb-therm.de

HB-THERM S.A.S.

5378 Route du Pou du Ciel

ZI de Revrieux 01600 Reyrieux

France

Phone +33 4 74 00 43 30

commercial@hb-therm.fr, www.hb-therm.fr

Distributors

Australia (AU)

Comtec Australia Pty Ltd, Keysborough VIC 3173

Austria (AT)

Luger Gesellschaft mbH, 3011 Purkersdorf

Belgium (BE)

AJ Solutions BVBA, 2240 Zandhoven

Brazil (BR)

HDB Comércio e Indústria Ltda., Cotia (SP) 06705-110

China (CN)

ARBURG (Shanghai) Co., Ltd., 201100 Shanghai ARBURG Machine & Trading, 518108 Shenzhen Dongguan Cenglary Trading Co., Ltd., 523845 Dongguan City

Tianjin Cenglary Trading Co., Ltd., 300452 Tianjin City Jiangsu Cenglary Engineering & Trading Co., Ltd.,

215300 Kunshan Devel. Dist.

Croatia (HR)

Luger Gesellschaft mbH, 3011 Purkersdorf

Czech Republic (CZ)

Luger spol. s.r.o., 251 01 Ricany

Denmark (DK)

SAXE Hansen, 3500 Værløse

Estonia (EE)

Telko Estonia OU, 13522 Tallinn

Finland (FI)

Engel Finland Oy, 00380 Helsinki

France (FR)
HB-THERM S.A.S., 01600 Reyrieux

Germany (DE)

HB-THERM GmbH, 53721 Siegburg

Hong Kong (HK)

ARBURG (HK) Ltd., Quarry Bay

Hungary (HU)

Luger Kft., Budapest 1147

India (IN)

Salnik Solutions, 400072 Mumbai

Indonesia (ID)

ARBURG Indonesia, Jakarta 10150

Ireland (IE)

KraussMaffei (UK) Ldt, WA5 7TR Warrington

Israel (IL)

SU-PAD Ltd., 4809102 Rosh Ha'ayn

Italy (IT)

Nickerson Italia Srl, 24030 Brembate di Sopra (BG)

Japan (JP)

ARBTECHNO Ltd., Iwaki 973-8406

Korea, Republic of (KR)

IMTS, 1449 Bucheon-si

Latvia (LV)

Telko Lativia SIA, 1026 Riga

Liechtenstein (LI)

HB-THERM AG, 9006 St. Gallen

Lithuania (LT)

Telko Lietuva UAB, 51183 Kaunas

Luxembourg (LU)

AJ Solutions BVBA, 2240 Zandhoven

Malaysia (MY)

ARBURG Sdn Bhd, 46150 Petaling Jaya

Mexico (MX)

Engel Mexico S.A. de C.V., 76246 El Marques, Querétaro

Netherlands (NL)

ROBOTECH bv, 4824 AS Breda

New Zealand (NZ)

AOTEA MACHINERY LTD., Auckland 1145

Poland (PL)

ELBI-Wrocław Sp. z o.o., 53-234 Wrocław

Portugal (PT)

KraussMaffei HighPerformance, S.A., 08100 Mollet del Vallès

Romania (RO) Plastic Technology Service Srl, 032451 Bucuresti

Singapore (SG)

ARBURG PTE LTD., Singapore 139965

Slovakia (SK)

Luger spol. s.r.o., 251 01 Ricany

Slovenia (SI)

Luger Gesellschaft mbH, 3011 Purkersdorf

South Africa (ZA)

GREEN TECH Machinery Ltd, 1709 Quellerina

Spain (ES)

KraussMaffei HighPerformance, S.A., 08100 Mollet del Vallès

Sweden (SE)

K.D. Feddersen Norden AB, 511 54 Kinna

Switzerland (CH) HB-THERM AG, 9006 St. Gallen

Taiwan (TW)

Morglory International Co., Ltd., Taichung City 40757 Thailand (TH)

ARBURG (Thailand) Co., Ltd., Samutprakarn 10540

ARBURG Plastik Enjeksiyon, 34524 Yakuplu-Büyükçekmece/Istanbul

United Kingdom (GB)

KraussMaffei (UK) Ldt, WA5 7TR Warrington

United States (US)
Frigel North America, East Dundee, IL 60118